Wiki Viewer Tiếng Việt 2022
Tiếng ViệtDeutschEnglish

Tập hợp rỗng

Trong toán học, và cụ thể hơn là lý thuyết tập hợp, tập hợp rỗng (hay còn gọi là tập rỗng) là tập hợp duy nhất không chứa phần tử nào. Trong lý thuyết tập hợp tiên đề (axiomatic set theory), tiên đề về tập rỗng thừa nhận sự tồn tại của tập rỗng, và mọi tập hữu hạn đều được xây dựng từ tập rỗng.

Tập hợp rỗng là tập hợp không chứa phần tử nào cả.
Ký hiệu tập rỗng

Ký hiệu

Ký hiệu chuẩn cho tập rỗng là   hoặc ∅, do nhóm Bourbaki (cụ thể là André Weil) đưa ra năm 1939.[1] Các ký hiệu này không nên bị nhầm lẫn với nguyên âm Øø của các ngôn ngữ vùng Scandinavia và chữ cái Hy Lạp Φ. Một ký hiệu thông dụng khác cho tập rỗng là {}.

Để so sánh, ta đặt ba ký hiệu cạnh nhau: ∅ Øø Φ – ký hiệu tập rỗng (ký hiệu đầu tiên) được dựa trên một đường tròn hình học, trong khi chữ cái Scandinavia giống như một chữ hình ôval 'O'.

Chú ý: Tập hợp {∅} không phải là tập rỗng mà là tập hợp có chứa 1 phần tử tên là rỗng.

Tập rỗng "∅" có mã unicode U+2205. Mã soạn thảo bằng TeX\emptyset\varnothing, cho ra các hình tương ứng là:

 

Tính chất

(Ở đây ta sử dụng các ký hiệu toán học)

  • Với bất kỳ tập A, tập rỗng là tập con của A (là tập con thực sự của A với mọi A khác tập rỗng):
     
  • Với bất kỳ tập A, hợp của A với tập rỗng là A:
     
  • Với bất kỳ tập A, giao của tập A với tập rỗng là tập rỗng:
     
  • Với bất kỳ tập A, tích Descartes của A với tập rỗng là tập rỗng:
     
  • Chỉ có một tập con duy nhất của tập rỗng là chính tập rỗng:
     
  • Số phần tử của tập rỗng (tức là lực lượng) là không (0); nói riêng, tập rỗng là tập hợp hữu hạn:
     
  • Với bất kì tính chất nào:
  • Luôn đúng với mọi phần tử thuộc tập rỗng (sự thật hiển nhiên)
  • Luôn sai với mọi phần tử thuộc tập rỗng
  • Ngược lại, nếu với một tính chất nào đó mà hai mệnh đề sau đúng:
  • Tính chất đúng với mọi phần tử thuộc V
  • Tính chất không đúng với mọi phần tử thuộc V
thì  

Chú thích

  1. ^ & (9 tháng 1 năm 2010). “Earliest Uses of Symbols of Set Theory and Logic”. Bản gốc lưu trữ ngày 20 tháng 2 năm 1999. Truy cập 16/11/2012. Wisely, we had decided to publish an installment establishing the system of notation for set theory, rather than wait for the detailed treatment that was to follow: it was high time to fix these notations once and for all, and indeed the ones we proposed, which introduced a number of modifications to the notations previously in use, met with general approval. Much later, my own part in these discussions earned me the respect of my daughter Nicolette, when she learned the symbol Ø for the empty set at school and I told her that I had been personally responsible for its adoption. The symbol came from the Norwegian alphabet, with which I alone among the Bourbaki group was familiar. Chú thích có các tham số trống không rõ: |accessyear=|accessmonthday= (trợ giúp); Kiểm tra giá trị ngày tháng trong: |access-date= (trợ giúp)Quản lý CS1: sử dụng tham số tác giả (liên kết)[1]

Xem thêm

Liên kết ngoài

🔥 Top keywords: 2112: Doraemon ra đời300 (phim)Anh hùng xạ điêu (phim truyền hình 2003)Bùng phát virus Zika 2015–2016Chuyên gia trang điểmCristiano RonaldoCá đuối quỷDanh sách Tổng thống Hoa KỳDanh sách câu thần chú trong Harry PotterDanh sách tài khoản Instagram có nhiều lượt theo dõi nhấtGiải Oscar cho phim ngắn hay nhấtHoan Ngu Ảnh ThịHầu tướcHọc thuyết tế bàoJason Miller (communications strategist)Lễ hội Chọi trâu Đồ SơnLộc Đỉnh ký (phim 1998)Natapohn TameeruksNinh (họ)Phim truyền hình Đài LoanRobloxThanh thiếu niênThần tượng teenThổ thần tập sựTrang ChínhTập hợp rỗngTỉnh của Thổ Nhĩ KỳVõ Thần Triệu Tử LongXXX (loạt phim)Âu Dương Chấn HoaĐào Trọng ThiĐại học Công giáo ParisĐệ Tứ Cộng hòa PhápĐổng Tiểu UyểnĐài Tiếng nói Việt NamTrang ChínhĐặc biệt:Tìm kiếmNguyễn Ngọc KýBảng xếp hạng bóng đá nam FIFACúp bóng đá trong nhà châu Á 2022Việt NamYouTubeĐặc biệt:Thay đổi gần đâyĐài Truyền hình Việt NamPhạm Bình MinhBão Noru (2022)Tô Anh DũngBão Haiyan (2013)Bảng tuần hoànGiải vô địch bóng đá thế giới 2022Park Min-youngBão nhiệt đới Linda (1997)Hồ Chí MinhJeffrey DahmerThang sức gió BeaufortHoa hậu Hòa bình Việt Nam 2022Bùi Nhật QuangDanh sách di sản thế giới tại Việt NamĐông Nam ÁBão Xangsane (2006)BãoUng ChínhPhó Thủ tướng Chính phủ (Việt Nam)Lionel MessiHà NộiLịch sử Việt NamJan KollerTrung QuốcChiến tranh thế giới thứ haiGoogle DịchThành phố Hồ Chí MinhUEFA Nations LeagueHoa Kỳ